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Noether Theorem in Higher-Order Lagrangian 
Mechanics 

R a d u  M i r o n  1 

Received October 28, 1994 

We study higher-order Lagrangian mechanics on the k-velocity manifold. The 
variational problem gives rise to new concepts, such as main invariants, Zermelo 
conditions, higher-order energies, and new conservation laws. A theorem of 
Noether type is proved for higher-order Lagrangians. The invariants to the 
infinitesimal symmetries are explicitly written. All this construction is a natural 
extension of classical Lagrangian mechanics. 

Analytical mechanics based on Lagrangians defined on higher-order jet 
spaces has been studied with remarkable results by many people (Andreas 
et al., 1991; Craig, 1935, Crampin et al., 1986; Grigore, 1993; Kawaguchi, 
1961; Kondo, 1991; Krupka, 1983; Krupkova, 1992; Leon et aL, 1985; 
Mangiarotti and Modugno, 1982; Miron and Atanasiu, 1994; Saunders, 1989; 
Synge, 1935; Yano and Ishihara, t973). 

The Lagrangian formalism is based on the so-called Poincar6-Cartan 
1-form (Garcia, 1974; Grigore, 1993; Crampin etal . ,  1986), or, more naturally, 
on a 2-form having as associated system the Euler-Lagrange equations 
(Crampin et al., 1986; Grigore, 1993; Krupka, 1983). 

A problem of interest is how to study the Lagrangians defined on the 
higher-order velocity space by methods which are straightforward extensions 
of the classical ones. More precisely, how can one derive the Euler-Lagrange 
equations from the condition that the integral of action 

I(c) = L x, d t  . . . . .  kt dt k] dt (I) 

satisfies the Hamilton principle or prove a Noether theorem in the classical 
manner? Of course, such a development of higher-order analytical mechanics 
does not have the same generality as that which is based on the Poincar6- 
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Cartan-Sourieau formalism. But it has a great advantage: it would be a 
natural extension of the original Lagrangian classical mechanics. 

The aim of the present paper is to get such an extension of classical 
Lagrangian mechanics to higher-order Lagrangian mechanics. 

For simplicity we study here only autonomous Lagrangians. The nonau- 
tonomous case will be treated in the same manner in a forthcoming paper. 

We begin with some preliminary considerations about the geometry of 
the total space of the k-jet bundle (or k-velocity bundle) JkM.  Here j k M  
(Crampin et al., 1986; Miron and Atanasiu, n.d.-a) is identified with the k- 
osculator bundle Osc*M, which has an obvious geometrical meaning. On the 
manifold E = Osc~M we introduce below in (1.3) the Liouville vector fields 
(1) (k) 
F . . . . .  F, the k-tangent structure J in (1.4), and the notion of the nonlinear 
connection N. These lead to the direct decomposition (1.5), which is essential 
in the geometry of the k-osculator bundle (Miron and Atanasiu, n.d.-a). 

In Section 2 we define the differentiable higher-order Lagrangian 
L(x, y~l~ . . . . .  y~k~) on E and remark on the case when L is regular. The Lie 

(1) (k) 
derivatives with respect to the Liouville vector fields F . . . . .  F of a Lagran- 
gian L determine the main invariants I1(L) . . . . .  Ik(L). Theorem 2.1 gives 
the necessary conditions (2.8), called Zermelo conditions, in order for the 
integral of action I not to depend on the parametrization of the curve c. 

In Section 3, following some ideas of Synge (1935), we present the 
variational problem for the integral of action l(c). Now we introduce new 
invariants I~(L) . . . . .  I~(L), establish the identity (3.5), and the Euler- 

0 
Lagrange equations (3.7). Of course we show that E,.(L) is a covector field. 

Also, the variational problem suggests (in Section 4) that we define in 
(4.2) the operator dvldt  and state the relations between the operators dv/dt, 
I b . . . . .  I k. All these operators are extremely useful in the formulation of 
Noether theorem. 

1 

Section 5 is devoted to the so-called Craig-Synge covectors Ei(L ) . . . . .  
k 
Ei(L). Theorems 5.2 and 5.3 give the main properties of these covectors. 

Section 6 is dedicated to the notions of energy and to the higher-order 
energies %(L), %~(L) . . . . .  %~(L). Theorem 6.1 affirms the existence for k > 
1 of some obstructions to the conservation of the energy %(L) along of the 

0 
solution curves of the Euler-Lagrange equations El(L) = 0. Formula (6.8) 
is remarkable. It has as a consequence (Theorem 6.3) that the energy of order 
k, %~(L), is conserved along the mentioned curves. 

Remarking that the energy %(L) is globally defined on E = OsckM, but 
it does not satisfy the conservation law, it is expected that a Noether theorem 
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referring to the autonomous Lagrangians L(x,  y<l) . . . . .  y<~)), k -> 1, will 
include essentially the energies of higher order %~ (L) . . . . .  %ck(L). 

In Section 7 we define the notion of symmetry and prove a Noether- 
type theorem. It states that, with respect to an infinitesimal symmetry (7.1), 
the scalar functions ~k(L, +) in (7.1 1) are conserved along the solution curves 

0 
of the Euler-Lagrange equations Ei(L)  = O. 

In the particular case k = 1 or k = 2 the functions ~k(L, qb) have a 
remarkable form. And if the Lagrangian L satisfies the Zermelo conditions, 
then the functions ffk(L, +) are given in Theorem 7.3. 

A first application to the higher-order electrodynamics described by the 
Lagrangian (2.3) can be worked out. 

A final remark. The previous theory is very useful in the higher-order 
Lagrange geometry (Miron and Atanasiu, n.d.-b) based on regular Lagrangi- 
ans of the form L(x,  y ~  . . . . .  y~k)). In this geometry a general gauge theory 
could be obtained following the present results and also those due to Asanov 
(1985), Crampin et  al. (1986), Sarlet et  aL (1987), Krupka (1983), Garcia 
(1974), Grigore (1993), Andreas et  aL (1991), Leon and Marrero (1991), 
Leon et  al. (1985, 1992), Saunders (1989), Souriau (1970), and many others. 

1. P R E L I M I N A R I E S  

Let M be a real, n-dimensional Ca-manifold and (J~M,  7r, M )  its k-jet 
bundle (or k-velocity bundle). It will be identified with a k-osculator bundle 
(OsckM, w, M ) ,  in which each point u ~ OsckM is considered to be a "k- 
osculator space" of the manifold M at the point x0 = w(u). Namely, if c: I 
---> M is a smooth curve whose image belongs to a domain U of a local chart 
on M, x0 ~ c, and c is represented by the equations x i = xi(O,  t E I, 0 
/, xo = (xi(0)), then the point u E OsckM can be represented by a small arc 
of a curve given by 

dkx  i d x  i 1 t~ ( - ~ ,  ~) C I 
x*i(t) = xi(O) + t T (0) + .--  + k~ ~ (0), t 

The indexes i, j ,  h, r, s , . . .  run over the set { 1, 2 . . . . .  n }. 
Therefore, on xr-~(U), the coordinates of the point u E OsckM can be 

given in the form 

1 dax  i 
X i = x i (O) ,  y(COi -- Or! dt  ~ (0), a = 1 . . . . .  k (1.0) 

We write E = OsckM and notice that by means of (1.0) the following 
local coordinate transformations (x i, y<l~i . . . . .  y ~ e )  ___> (yi, y<l~i . . . . .  y<k~i) 
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are obtained: 

~ = Xi(x 1 . . . . .  x") ,  

�9 b Y ' z  y(1)j 

rank [[ 0xi/OxJ U = n 

237(2)i = bY (1)/u _]_ 2 by(1)i v(Z)J 
bx  j r by (1) jJ  

bY (k-1)i b.~(k-1)i y(k)j bY(k-1)i y(~)J + 2 - - v ( z ) J  § - ' '  § k 
k~(k)i -- OX j Oy (Oj -" 

We have 

(1.1) 

bs ~ - Oy(1) i by(k)~ 
, 

bX j by ([)j by (k)j 

b y  (1)/ - -  b~7 (2)i by(k) i 
, ~  

bx----]--- by(O------ ~ = by(k_Oj; etc. 

The simple form (1.1) allows us to check the geometrical character of 
the notions which we use in this paper. For instance, ranklly(L)ill = 1 has a 
geometrical character. Then 

= {u ~ E l u  = (x i, yO)i . . . . .  y(k)i), ranklly(~)ill = 1} 

is an open submanifold in E. This is an important fact in our construction 
of the higher-order Lagrange geometry. 

Looking for transformations of the natural basis (blbx  ~, b/by ~ . . . . .  ~/ 
by (k)~) with respect to (1.1), given by 

by ~)j 0 OYd b b _ Oy(k)J 0__0___ + . . .  + _ _ + _ _ _ _  
bX i bX i o~(k)J OX i b y  (l)j bX i O~ j 

b _ b]  (k)j 0 + . . .  + b y  (1)j 0 

by(D i byO)i Oy(k)J byO) i by(l)J 

0 _ 0y (k)j 0 
Oy(k)i Oy(k)i Oy(k)j (1.2) 

we see that the vector fields {O/Oy (k)i} generate a distribution Vk on E of the 
local dimension n; { O/Oy (k- 1)i, O/Oy (k)i } determine a distribution Vk- 1 on E of 
local dimension 2 n ; . . .  ; { OlOy ~ . . . . .  O/by ~)~} give the vertical distribution 
V = V1 on E of local distribution kn. We have 
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v ,  ~ v2 z . . .  ~ vk 

By means of (1.1) we can prove that 

(l) O 

(2) a O 
= + 2y( 2 ) i -  

F y(l)i OY (k-l)i OY (k)i 

(k) O O 0 
1" = y(1)i OY (1)i + 2y(2)i OY (z)i + . . .  + ky(k)i 3Y (k)~ (1.3) 

(l) (2) 
are global vector fields on E. Here F belongs to the distribution Vk, F belongs 

@) 
to the distribution Vk-l . . . . .  F belongs to the distribution V1. They are called 

(1) 
the Liouville vector  f ie lds  on E. For k = l, F is the classical Liouville vector 
field on the tangent bundle T M  of  the manifold M. 

The existence of the distribution I/1 . . . . .  Vk allows us to introduce the 
notion of a k-tangent structure J: ~(E)  --~ ~(E)  defined by 

_ _ j 0 _ 0 

OyO )i' O ~  i Oy( 2)i . . . . .  

We get 

Theorem 1.1. The k-tangent structure J has the following properties: 

1. J is globally defined on E. 

r k+' --I 
2. ranklIJII = kn; j o j o . . . o j  = O. 

(k) (k-l) (2) (1) (l) 
3. J (F)  = F . . . . .  J (F )  = F , J ( F )  = 0. 
4. J is an integrable structure. 

(k) 
A k-spray on E is a vector field S on E such that JS = I'. 
A nonlinear connection is a vectorial subbundle N(E) of  the tangent 

bundle T(E) such that the Whitney sum 

T(~ = N(LD @ V(E~ 

holds. 
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Put t ing  No = N ,  N1 = J(No) . . . . .  Ni , - i  = J(Nk-:z) we obtain the 
direct decomposition 

T,,(E) = No(u)  (~3 N l ( u )  (~3 . . -  (3  N t , - l (u )  (3  Vt,(u), 'Vu E E (1.5) 

The geometry of  the total space E = OsckM is studied by means of  the 
direct sum (1.5). We have proved that a k-spray determines a nonlinear 
connection. Other important geometric objects on E such as linear connec- 
tions, Riemannian metrics, etc., are always expressed by means of  the decom- 
position (1.5). 

2. H IG I t E R- O RDER LAGRANGIANS.  THE MAIN INVARIANTS. 
Z E R M E L O  C O N D I T I O N S  

A scalar field L(x ,  yO) . . . . .  ytk)) on E is called a (an autonomous) 
higher-order differentiable Lagrangian if it is of  C| on/~ and continuous 
at the points u E E for which y")~ = 0. 

Using (1.2), we can prove that 

1 O2L 
gii -- 2 Oy~k~iOy ck~-i (2.1) 

is a distinguished tensor field (a d-tensor) on/~. That is, with respect to (1.1) 
we have 

If  

OX r OX ~ 

rankllg~Ax, y(l~ . . . . .  y<~)ll = n on /~ (2.2) 

we say that L(x ,  y ( "  . . . . . .  y~k~) is a regular Lagrangian. 
For the moment we study higher-order differentiable Lagrangians with- 

out the regularity condition. 
For example, 

L(x,  y~l) . . . . .  y~k~) = 7i.i(x)z~)iz~k)j + ai(x ,  y~l~ . . . . .  y(k-l))Z~k~i 

+ b(x, y~l~ . . . . .  y~k-l~) (2.3) 

is a regular Lagrangian of order k (Miron and Atanasiu, n.d.-b). This is a 
generalization of a very well known Lagrangian from electrodynamics. 

For any differentiable Lagrangian L(x, yO) . . . . .  y(k)) we take the Lie 
~D (k) 

derivatives with respect to the Liouville vector fields F . . . . .  F: 
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P ( L )  = ~ 3 L  . . . . .  Ik(L) = 5~(~>L (2.4) 

The course P ( L )  . . . . .  Ik(L) are scalars on E and differentiable on/~. They 
are important in the study of higher-order Lagrangians. We say that P(L)  . . . . .  
Ik(L) are the main invariants of  the Lagrangian L(x, y(13 . . . . .  y(k3). They have 
the expressions 

OL OL �9 OL I2(L ) = y ( 1 ) i  + 2y(2~i 
I 1 (L)  = y (1)~ Oy (k)i' Oy (k - 13--'---5 Oy (k)i . . . . .  

OL + 2y(2),. OL + . . .  + ky(k)i OL (2.5) 
ik(L) = y ( l ) i  OY O)i OY (2)i c3Y (k)i 

Let us consider c: [0, 11 ~ M a smooth curve, c(O = (xi(t)), t E [0, 
1]. Its extension to the manifold E is 

( dxi l dkxi~ 
c*: t E [0, 1] --~ xi(t), d-~ . . . . .  k! dt t' J ~ p" (2.6) 

The integral of action of L(x, y ( 1 )  . . . .  , y(~) on e is defined by 

i( l(c) = L x(t), d t  . . . . .  k[ - ~  dt (2.7) 

Now we can prove: 

Theorem 2.1. The necessary conditions that I(c) does not depend on the 
parametrization of the curve c are 

P ( L )  . . . . .  Ik-l(L) = 0, Ik(L) = L (2.8) 

Proo f  Let ? = ~'(t), t ~ [0, 1], be a differentiable diffeomorphism. In 
order for the integral of action I(c) not to depend on the parametrization of 
the curve c is necessary that 

( 1 aT 
L\~,  d--f . . . . .  k! dr k ] dt (*) 

= L x, dT dt . . . . .  k! dt k-l 

The last equality holds for any diffeomorphism / = ?(t). Deriving it with 
respect to dT/dt and taking ~ = t, we get 

OL + . . .  + ky(k)~ OL 
L = y( l ) i  OY (l)i OY (k)i 

or lk(L) = L. Deriving again (*) with respect to dZ[/dt 2 and taking ~" = t, we 
obtain I~-I(L) = 0. By induction we have (2.8). QED 
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Kawaguchi (1961) and Kondo (1991) named equations (2.8) Zermelo 
conditions. 

It is interesting to remark that if the Zermelo conditions hold, then 
L(x,y(1) . . . . .  y(k)) is not a regular Lagrangian (Kondo, 1991). 

3. VARIATIONAL PROBLEM 

Craig (1935) and Synge (1935) studied the variational problem for the 
integral of action I(c) in (2.7). We add here some new considerations, which 
allow us to introduce important new operators useful in the proof of  the 
Noether theorem. 

Let c: [0, 1] --~ M be a smooth curve whose image belongs to the domain 
of a local chart U C M. Its extension to/~ is c*: [0, 1] ---> E, given in (2.6). 

On the open set U C M we consider the curves c~: [0, 1] ---> M: 

c~: t E [0, 1] --> (xi(t) + eVi(t)) ~ M (3.1) 

where e is a real number sufficiently small in absolute value such that Im c~ 
C U and Vi(x(t)) [denoted Vi(t)] is a regular vector field on the curve c. We 
assume that all curves c~ have the same endpoints c(0) and c(1) with the 
curve c and their osculator spaces of order 1 . . . . .  k - 1 to be coincident at 
the points c(0) and c(1). Therefore, the vector field Vi(t) satisfies the conditions 

V~(O) = Vi(1) = 0 

dVi (0) dVi 
d t  = - - d - ( 1 )  = ~ . . . . .  

dk-lVi dk- lV  i 
dt~_ l ( 0 ) -  dtk_ ! ( 1 ) =  0 (3.2) 

The integral of action I(c~) of the differentiable Lagrangian L(x, y(t) . . . . .  
y(k)) is as follows: 

IO ( dx dV 1 {dkx i dkV~ 
I(c~) = L x + eV,, -~ + e d-'--t . . . . .  k~ \ at ~ + e - ~ ) )  dt 

A necessary condition for l(c) to be an extremal value for I(cO is 

dI(c___~) = 0 (*) 
de I~=o 

We have 

dI(c~)_ fO d ( ( dx dV 1 (dkx dgV_~ 
de -~e L x +  eV,-~ + e d---t . . . . .  k ~. \ dt k + e - - ~  ] j dt 
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and the Taylor  expansion of  L at the point e = 0 gives 

dI(c~) ( ( S L v i  3L d V  i 1 0 L  dkVi'~ 

de ~=o = Jo ~ + - -  + " ' "  + dt Oy (l)i dt k! Oy (k)i - ~  ] 

Now, putting 

Ill(L) : vi OL 
Oy(k)i' 

[ I~ (L )  vz oc = "~-'k 
Oy(1)' 

OL d V  i OL 
I~(L) = v ~ + - -  

Oy (k-~)i dt Oy (~)i . . . . .  

dV i OL 1 d2V i OL 1 d k - I v  i OL + + . . . + - -  
dt Oy (2)i 2! dt 2 0 y  ~3)~ ( k -  1)! dt k-~ Oy ~k)~ 

(3.3) 

and 

o OL d OL 1 d k OL 
El(L) = Ox i dt 8y (~)i + "'" + ( -  1)~ k! dt* Oy ~k)i (3.4) 

one deduces a very important  identity: 

OL Vi + OL d V  i 4- 4- 1 OL d k V  i 

Ox' 8y (l)z dt k! 8y (k)z dt k 

o d lkv(L) 1 d 2 1 d ~ l~v(L) 
= E i (L)V  i 4- ~ - 2~.dt---5Ikv-'(L) + . . .  + ( - 1 )  ~-1 k~dt-- ~ 

(3.5) 

Also, using (3.2), we have  

l~(L)(c(O)) = I~(L)(c(1))  = 0, r = 1 . . . . .  k (**) 

Consequently,  we can write 

= Ei (L)V  i dt + I~(L)  - I~-I(L) 

1 d k-1 } 
+ " '"  + ( - 1 ) k - 1  k! dt k-1 I~(L)  dt (3.6) 

By  means  of (**) it fol lows that 

dI(cO = I0 t 0 
de ~=0 Ei (L)V  i dt (3.6') 
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Now, taking into account the fact that V i is an arbitrary vector field, then 
(3.6') and (*) lead to the following result: 

Theorem 3.1. In order for the integral of action I(c) to be an extremal 
value for I(c,) it is necessary that the following Euler-Lagrange equation hold: 

0 def OL d OL 1 d k OL 
Ei(L) - Ox i dt Oy ~1~ + "'" + ( -  1)~ k! dt k ;)y~k)i 0 

�9 dxi y~k)i_ 1 dkx i 
y(1)t = d--t . . . . .  k! dt k (3.7) 

The curves c: [0, 1] --~ M, solutions of equation (3.7), are called extremal 
curves of the integral of action I(c). 

The equality (3.6') implies the following result: 

0 
Theorem 3.2. El(L) is a covector field. 

Proof. Under a coordinate transformation (1.1), from (3.6') it follows that 

f j [ ~ i ( L ) Q i - E i ( L ) V i J d t  

~- i ( L )  ~ - Ej(L V j dt = 0 
Ox j 

But V; is an arbitrary vector field. One deduces 

0 o.~i 0 
/~i(L) - -  = Ej(L) QED 

c3xJ 

o 

Remark. Ei(L) = 0 has a geometrical meaning. 

4. O P E R A T O R S  dvldt, I 1, . . . ,  I~ 

On further examination of  the identity (3.5) we can introduce some 
important operators frequently used in the theory of higher-order Lagrangians. 

Let c: t ~ [0, 1] --, (xi(t)) ~ M be a smooth curve, c* as in (2.6), its 
extensions to E = OsckM, and Vi(x(t)) a differentiable vector field along c. 
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It is easy to see that we have: 

Lemma 4.1. The mapping Sv: c ---> OsckM, defined by 

x i =  xi(t), t E [0, 1] 

y(1)i = Vi(x(t)), 2y(2)i_ dVi 
d t " ' "  

ky (k)i -- 1 d k - l V  i 

(k - 1)! dt k-I 

(4.1) 

is a section of the projection or: OsckM --+ M along the curve c. 
Indeed, using (1.1), we get 

3 s  i Oy i 
yO)i --= y(l)j W = (,,i, 

Ox J Ox; ' 

-- 1 dk-1 ( ~ i  ) 1 d k - l v  i 
Icy(k)i (k 1)~--~ dt k-~ \Ox j W = (k 1)~--~ dt k- '  

Clearly, if V" = dxi/dt, then Sa,/d,(c) = c*. 
The identity (3.5) suggests that we introduce the following operator 

along the curve c: 

d__v= Vi___=c9 + dV i . . . . .  3 + + 1 dkW O (4.2) 
dt 3x' dt Oy (~)i k! dt k 3y <k)i 

The importance of this operator results from: 

Theorem 4.1. The operator dv/dt has the following properties: 
1. dv/dt is invariant with respect to the coordinate transformations (1.1). 
2. For any differentiable Lagrangian L(x, y~) . . . . .  y(~)), dvL/dt is a 

scalar field. 
3. dv/dt  is a derivative operator, i.e., 

= dvL dvL___~' dv(aL) dvL 
~t (L + L')  ---~-+ dt ' dt - a d r '  

a e R  

~t  dvL , dvL ' 
(L .L ' )  =-- -~- .L  + L.  dt (4.3) 

4. If V i = dxZ/dt, then 

dvL dL 

dt dt 
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Proof. 
we have 

1. Using (1.1) and (1.2) along of the section Sv from (4.1), 

dv . 3 + 2y(2~i 0 + . . .  + ky(k)i O + dy (k)~ O 
dt - y(1), Ox___. 7 OY (l)i Oy (k-t)i dt  Oy (k)i 

= y(l)i O. + 2y0) i O O + dy (k}i O 
3Y~' Oy (1)i + "'" + ky(k)i Oy (k-l)~i dt Oy (k)i (4.4) 

The last equality proves the invariance of the operator dvldt  with respect to 
the transformations of coordinates on the manifold E. 

2. From part 1 we deduce dvL/dt  = dvL/dt  for any Lagrangian L. 
3. The particular form (4.2) of the operator dv/dt  implies (4.3). 
4. In the case V i = dxi/dt and observing that along the curve c we have 

dx i 1 dkx i 
y(l)i _ dt . . . . .  y ( k ) i - - k !  dt k 

d L _  3L OL 
dt Ox' y(l)i + 2 0  ~ y(2)i + . . .  "k- k 3L . OL dy (k)i : Oy(k_l)~ i y(k), + Oy (k) i -  dt (4.5) 

it follows that dvL/dt  = dL/dt for V i = dxqdt. 
For these reasons, dvldt  is called the total derivative in the direction o f  

the vector f ie ld  V i. 
Now, let us consider the operators 

II~ = V i ~ 1 2 =  V i 0 + d V i  0__0_ 
Oy (k)s' Oy (k-l)i dt  Oy (k~ . . . . .  

I~ = V i ~ + dVi  0 q- . . .  + 1 d k - ' V  ~ 0 (4.6) 
Oy (1)i Oy (2)i (k - 1)! Oy (kli dt  dtk-I  

Similar to the previous theorem we can prove: 

Theorem 4.2. The following properties hold: 

1. l b  . . . . .  I~, are vector fields along the curve c. 
2. I k = J(dvldt),  I~ -1 = J(Ikv) . . . . .  I~v = J(I2v). 
3. I~(L)  . . . . .  I~(L) are the scalars (3.3). 

(1) 
4. If V i = dxi/dt, then I~ . . . . .  I k are the Liouville vector fields F, 
(k) 

. . . .  F along the curve c. 

Finally, the identity (3.5) leads to the following theorem: 

Theorem 4.3. Along a smooth curve c of the manifold M we have 
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dvL  o d 1 -- ViEi(L) + I~(L) d2 rk-lr .~ 
dt dt 2! d-~ i v  ~ j  

1 d ~ I~(L) (4.7) 
+ - . .  + ( - 1 )  k-1 k~ " dt---~ 

Indeed, (3.5) and (4.2) have as consequence the formula (4.7). 

Corollary 4.1. For any Lagrangian L(x, y(l) . . . . .  y(k)) along a curve c 
we have 

dL dx i o d 1 d 2 
- El(L) + Ik(L) Ik - l (L)  

dt dt ~ 2! dt 2 
1 d k 

+ . . .  + ( - 1 )  k-l k ! d t  ~ I1(L) (4.8) 

Corollary 4.2. If c is a solution curve of the Euler-Lagrange equation 
0 
Ei(L) = 0 and along c we have 

1 d k - l P ( L )  
1 d lk - l (L)  + . . .  + (_ l )k_  1 k! dt k-t - I~(L) 2! ~ -  

then the Lagrangian L is constant along c. 

const 

5. CRAIG-SYNGE COVECTORS 
0 

To the covectors field E;(L) along a curve c we shall associate other k 
1 k 

covectors fields El(L) . . . . .  Ei(L) introduced 60 years ago independently by 
Craig (1935) and Synge (1935). These fields are useful in the geometry of 
regular Lagrangians of order k (Miron and Atanasiu, 1994, n.d.-b). 

Let us consider a smooth curve c: [0, 1] ---> M and along c the operators 

o 0 d 0 1 d ~ 0 
Ei = Ox i dt Oy (~)~g + "'" + ( -  1)k k! dt ~ Oy (k)i 

E i = ( -  1)a ~ 0 
~,=l . eL - 1 dt ~-~ Oy(a) i 

El2 = Ek -~1 ( e~ ) d~-2 0 
( - 1 ) ~ ,  a -  2 dt ~-2 0y(~) i or=2 

1 o (5.1) 
Ei = ( - 1 )  k k! Oy (k)i 
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These operators act R-linearly over the R-linear space of Lagrangians L(x, 

y(O . . . . .  y(~)). We shall prove that Ei(L) (eL = 1 . . . . .  k) are covector fields, 
To this aim, we first prove: 

Lemma 5.1. For any differentiable Lagrangian L(x, yO) . . . . .  y(~')) and 
any differentiable function ~b(t) along the curve c we have 

0 0 d+ I ~ k  
Ei(d~L) = dpE~(L) + --~ E~(L) + . . .  + ~, Ei(L ) (5.2) 

Indeed, from (5.1) we deduce 

o O(d~L) d O(d~L) + . . .  + ( _ l ) k l  d k O(+L) 
E i ( O o L ) -  Ox i dt Oy (l)i ,~. dt k Oy (k)i 

Noticing that 

O(+L) ~b OL O(+L) OL (a  = 1, k) 
OX i - -  OX----~, Oy(~)i -- + Oy(a)i . . . .  

and applying the Leibniz rule for calculating 

we get the identity (5.2). 
Now, we can prove the following result without difficulty: 

Theorem 5.1. For any Lagrangian L(x, y(~) . . . . .  y(k)) along a smooth 
1 k 

curve c, Ei(L) . . . . .  El(L) are covector fields. 

Remarks.  1. If L is a regular Lagrangian of order k, then the covector 
k - I  

field Ei (L) determines a k-spray a n d a  nonlinear connection which depend 
on the Lagrangian L only (Miron and Atanasiu, n.d.-b). 

2. OL/Oy(k)i is a covector field on E. 

I_emma 5.2. If F is a Lagrangian of order k with the property c~F/Oy (k)i 
= 0, then the following equations hold along a smooth curve c: 

0 dF  d OF 

Oxi dt dt Ox 

0 d F  OF d OF 

Oy ~ dt Ox ~ dt Oy ~ 

0 dF  OF d OF 
Oy (k-~)i dt - (k - 1 ) - -  + Oy (k-z)i dt Oy (k-1)i 

0 d F  OF 
- -  k - -  

Oy (k)i dt Oy (k-l)i 
(5.3) 
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Now we are able to prove an important result: 

Theorem 5.2. For any differentiable Lagrangians L(x, y~l) . . . . .  y~k)), F(x, 
y~) . . . . .  y~k-~)), (OF/Oy~i = 0), along a smooth curve c we have 0( 

Ei L + = Ei(L) (5.4) 

Proof. Taking into account the property 

Ei L + ~ = Ei(L) + , \  dt ) 

o 

and using (5.3), we get Ei(dF/dt) = 0. Therefore (5.4) holds. QED 

Theorem 5.3. For any differentiable Lagrangian F(x, y~i) . . . . .  y~k-~)), 
along a smooth curve c we have 

i ~ - ~ }  = O, '~ dt J - E i ( F )  . . . . .  i \ - ~ /  - Ei (X)  (5.5) 

Corollary 5.1. If a differentiable Lagrangian F has the property cgF/Oy (k)i 
= 0, then it also has the property 

E~ dt /l = 0  implies Ei (V)  = 0  (or = 1 . . . . .  k) 

6. ENERGY %(L) AND ENERGIES OF ORDER 1 , . . . ,  K, 
%c~(L), . . . ,  %~(L) 

In the case k = 1 the notion of energy of a Lagrangian L(x, y) is defined 
by %(L) = yi OL[Oy i - L. In terms of the main invariant II(L)  = yi OL/Oyi 
the energy is expressed by %(L) = II(L) - L. Therefore, it is natural to 
define the notion of  energy o f  a higher-order Lagrangian L(x, y(l) . . . . .  y(k)) by 

%(L) = Ik(L) -- L (6.1) 

or in a longer form 

%(L) = y~l) OL + 2y~2)i OL + . . .  + ky~k)i 3___~L _ L (6.2) 
Oy ~ 1)i Oy (2)i Oy ~k)i 

The function %(L) is a differentiable Lagrangian of order k. 
For k = 1 along a smooth curve c we have 

d% (L) dxi o 
- Ei(L)  (6.3) 

dt dt 
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where 

o 0 d O 

Ox' dt Oy' 

o 

If c is a solution curve of the Euler-Lagrange equation Ei(L) = 0, then %(L) 
is constant along the curve c. In the general case, for k > 1, this important 
result does not hold. 

Namely, for k > 1 there exist some obstructions to the conservation of 
the energy %(L) along the solution curves of the Euler-Lagrange equation 
0 

El(L) = O. 
We shall prove the existence of the mentioned obstructions. 

Theorem 6.1. The energy %(L) of a differentiable Lagrangian L(x, 
y(l~ . . . . .  y(k}) is conserved along the solution curves c of the Euler-Lagrange 

o 
equation Ei(L) = 0 if, and only if, along c we have 

1 d Ik_~(L) 1 d 2 1 d k-l 
2~ ~ - 3~ dt ---5 Ik-2(L) + "'" + ( -  1)k k~ dt k-----5 P(L) = const 

(6,4) 

Proof. Let c be a smooth curve in the manifold M. From (6.1) we deduce 

d%(L) _ dlk(L) dL 

dt dt dt 

By means of (4.8) it follows that 

d%(L) dx i o 1 d2I k-1 1 d3I k-2 
dt dt Ei(L) + 2! dt 2 3! dt 3 

1 dkll(L) 
- -  + " '"  + ( - 1 ) k k S .  dI ~ 

Consequently, %(L) is conserved along the solution curves of the equation 
0 

El(L) = 0 if and only if (6.4) holds. QED 

Remark. If the Lagrangian L satisfies the Zermelo conditions (2.8), then 
its energy %(L) vanishes. 

The last theorem shows that it could be useful to introduce another kind 
of energy which depends on the curve c, but is conserved along the solution 
curve c of the Euler-Lagrange equation (Leon et al., 1985, 1992; Krupka, 
1983, etc.). 

Definition 6.1. We call energies of order k, k - 1 . . . . .  1 of the Lagrangian 
L(x, y~l~ . . . . .  y(k~) with respect to a curve c the following invariants: 

(6.5) 
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%~(L) = Ik(L) 
2~ 

%~_t(L) = _ 1  ff,_l(L) 

1 %kc-2(L ) = ~.~ Ik-2(L) 

%I(L ) = (_l)k_ t 1: i t(L ) 

1 d l k - l ( L )  + . . .  + ( _ l ) k _  1 1 d k - l l l ( L )  
dt k! dt ~- t L 

1 d lk -Z(L)  + . . ,  + ( _ l ) k _  1 1 d k-2 
+ 3! ~ -  k! d ~  It(L) 

1 dI k-3 1 d k-3 
- -  + "'" + ( - l ) k - t  k! dt ~-3 I~(L) 4! dt 

(6.6) 

The dependence of these invariants on the curve c is obvious. A first 
result: 

Proposition 6.1. If the Lagrangian L satisfies the Zermelo conditions 
(2.8), then all energies %~(L) . . . . .  %~(L) vanish. 

Also, we have: 

Proposition 6.2. The following identities hold: 

d %k-1 (L) %~(L) - 

d 
%~-'(L) - ~ %~c-2(L) 

= %(L) 

1 = -~.~ Ik-t(L) 

d 1)k_ 2 1 I2(L ) (6.7) 
%~(L) - ~ %~(L) = ( -  (k - l)-----~ 

As we shall see, the energies %~(L) . . . . .  %~(L) are involved in a Noether 
theory of symmetries of the higher-order Lagrangians. With this end in view 
we state the following result: 

Lemma 6.1. For any differentiable Lagrangian L(x, y(l) . . . . .  y(k~) and 
any differentiable function "r: M -4 R along a smooth curve c: [0, 1] --~ M, 
we have 

d ' r L _ [ d " r  ld2"r ldk ' r  ] 
I (L) + + " '  + k5 d-V r ( L )  

d ~ ( L )  d {-"r%~(L) + d'r d2T 
- "r d ~  + dt ~-~ %~-'(L) - ~ - ~  %~-Z(L) 

M 

d~-l'r } 
+ "'" + ( -  1)~ d - ~  %~(L) (6.8) 
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Proof The right-hand side of this equality, by means of (6.7), succes- 
sively becomes 

d'r %~(L) + %k-l(L) + - . .  
- dt dt J ~ dt J 

d k-dt k-''r { d%~(L)~ .j dk'r %~(L) + ( - -1 )  k-I  ~c2(L) + ( - - 1 ) k - ~  - 

_ d'r {Ik(L) _ L} 1 d2"r ik_l(L) 1 d3"r ik_2(L) . . . .  
dt 2! dt 2 3! dt 3 

1 dk-l'r 1 d% ii(L ) 
(k - 1)! dt k-l I2(L) - k~ dt ---Z 

d ' r [ d ' r  ld2"r ldk ' r  ] 
= - - ' L -  I~(L) + Ik-l(L) + "'" + --  II(L) 

dt --~ ~.. - ~  kr - ~  

Consequently, (6.8) holds. QED 

An important result (Andreas et al., 1991; Leon et al., 1985) is given 
as follows: 

Theorem 6.2. For any differentiable Lagrangian L(x, yO) . . . . .  y~k)) along 
a smooth curve c: [0, 1] --~ (xi(t)) ~ M, we have 

d%kc(L) o dxi 
- - -  Ei(L) - -  (6.9) 

dt dt 

Indeed, from (6.6) we get 

_ _  1 dk-'11(L)'~ dL 
d%~(L)dt - dtd ik(L ) 21! dl~-'(L)dt + "'" + ( -1)k- '  k! d - ~  J dt 

Substituting here dLIdt from (4.8) and performing the obvious reductions, 
we get (6.9). 

An immediate consequence of the last theorem is the following: 

Theorem 6.3. For any differentiable Lagrangian L(x, y{t~ . . . . .  y{k)) the 
energy of order k, %~(L), is conserved along of every solution curve c of the 

o 
Euler-Lagrange equation Ei(L) = O. 

7. NOETHER THEOREMS 

By Theorem 5.2, the integral of action I(c), (2.7), of the differentiable 
Lagrangian L(x, yO~ . . . . .  y~)) and the integral of action 

fi{( ( I'(c) = k x, dt . . . .  ' k-7. dt k) + dt F x, dt . . . . .  (k - 1)Z dte- lJJ  dt 
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for any function F(x,  y(~) . . . . .  y(k-O),  give rise to the same Euler-Lagrange 
0 

equation Ei(L) ,  depending on the Lagrangian L only. Therefore, we can 
formulate: 

Def in i t ion  7.1. A symmetry of the differentiable Lagrangian L(x,  
y(l) . . . . .  y(k)) is a C=-diffeomorphism q~: R • M ~ R X M, which preserves 
the integral of action I(c)  of L. 

For us it is very convenient to study the infinitesimal symmetries of 
higher-order Lagrangians. We start with an infinitesimal transformation on 
R X M, given in the form 

x 'i = x i + ~Vi(x, t) (i = 1 . . . . .  n) 

t' = t + ~'r(x, t) (7.1) 

where e is a real number sufficiently small in absolute value such that the 
points (x, t) and (x', t') belong to the same local chart. Let c be the curve 
c: t E [0, 1] ---) (t, x i ( t ) )  ~ R X M.  Terms of order greater than 1 in 
are neglected. 

The inverse transformation of (7.1) is 

x i = x 'i - ~Vi(x,  t), t = t' - ~"r(x, t) 

Along the curve c, Vi(x(t) ,  t) is a vector field. Applying Lemma 4.1, we find 
that Sv in (4.1) is a section in OsckM along c. 

At the endpoints c(0) and c(1), V i satisfies the conditions (3.2). 
The infinitesimal transformation (7.1) is a symmetry for the Lagrangian 

L(x,  y(1) . . . . .  y(k~) if and only if for any C~-function F(x,  y(t~ . . . . .  y(k-~)) 
the following equation holds: 

dx'  1 dkx"~ 
L x ' ,  dt---- 7 . . . . .  k! d t ' k ]  dt '  

= L x , - -~  . . . .  k! dtk/] 

From (7.1) we deduce 

+ ~ x , - ~  . . . .  (k - 1)! d t ~ - ~ J J  dt  (7.2) 

dt '  d r  
- - = l + e - -  
dt  dt  

dX ti d x  i 
_ _  _ + ~ ( l ) ~  

dt '  dt  
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1 d2x'i-  (d2xi ) 
2! dt 'a \ dt a + eq~(a)i ' " ' '  

1 d k x ' i -  1 fdkxi ) 
k! dt 'k k! \ dt ~ + eq~(k}~ (7.3) 

where we have put 

d V  ~ dx i d"r qo(l) i = 
dt dt dt 

, v i  
tP(z)i-- dt 2 dt 2 dt dt dt 2 

dkWi (kl) dkxidT (k2) dk-lxid2"r (:) dxidkT ( 7 . 4 )  

q~ = dt k dt ~ dt dt k-l dt 2 . . . . .  dt dt k 

By virtue of (7.3) and (7.4), the equality (7.2), neglecting the terms in 
~2, e3 . . . . .  and putting ~b = eF, leads to 

t dT "}- OL gi At- OL �9 L O..~L. �9 _ d(~ 
dt  Ox ---7 0 ~  @(1), Jr_ ....q_ k! Oy (k}i @(k)t _ --fir (7.5) 

Conversely, if (7.5) holds, for L, W, "r, and c given, then putting e~b(x, 
y(1) . . . . .  y(k-1)) = F(x, ya) . . . . .  y(k-~)) the equality (7.2) is satisfied for the 
infinitesimal transformation (7.1) neglecting terms of order >-2 in e. 

But @)i . . . . .  q~(k)i are given by (7.4). It follows that the equality (7.5) 
is equivalent to 

Vi ---=OL + dV  i . . . .  OL + + 1 dkV i OL 
Ox' dt Oy (1)i k! dt k Oy (k)i 

+ L --~ - Ik(L) + ~. Ik - l (L)  - ~  
dkq} 1 I I (L  ) = _  

+ " ' "  + k-Z. dt I dt 
(7.6) 

Using the operator (4.2), we can state the following result. 

Theorem 7.1. A necessary and sufficient condition that an infinitesimal 
transformation (7.1) be a symmetry for the Lagrangian L(x, yO~ . . . .  , y(g)) 
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along the smooth curve c is that the left-hand side of the equality 

dvL ~L d'r [ dr l ik_ da'r 1 dk'r]~ 
- -  + - I~(L) + I(L) + . . .  + - - I f ( L )  
dt ( ~ ~ ~. J k! d? J J 

_ dqb (7.7) 
dt 

be of the form (d/dt)+(x, y O ) . . . ,  y(,-1)) along c. 

Theorem 4.3 and Lemma 5.1 show that (7.7) is equivalent to 

1 d 2 _ 1 d k l lv (L)  o d ikv(L) 2! ViEi(L) + dt -- - - - ~ I ~  '(L) + .. .  + ( -1 )  k-~ ~ - ~  

d d [_~%,(L)+d~ dk-'~ ] 
+ "r ~(L)  + ~ ~-~ %~-'(L) . . . .  + ( - l )  k-' dtk_ , ~(L)  

d~ 
dt 

(7.8) 

0 

By Theorem 6.3, Ei(L) = 0 implies d%~(L)/dt = 0 and (7.8) leads to 
the Noether theorem: 

Theorem 7.2. For any infinitesimal symmetry (7.1) [which satisfies (7.7)] 
of a Lagrangian L(x, y(l) . . . . .  y(k)) and for any function ~b(x, y(l) . . . . .  y (~-1)), 
the function 

~ef _ 1 d 1 dk-I 
~k(L, ~b) = I~(L) ~. ~tI~-'(L) + ""  + ( - 1 )  ~-' k] dt k-I llv(L) 

d'r l dk-lT -t + 
- T~(L) + ~Z~c-L(L) . . . .  + ( - l )  ~- d t k _  1 ~c(L) - 

(7.9) 

is conserved along the solution curves of the Euler-Lagrange equation 
0 

E~(L) = O. 
The functions ~*(L, ~b) in (7.9) contain the relative invariants I~(L), 

. . . .  I~v(L), the energies of order 1, 2 . . . . .  k, %~(L) . . . . .  %~(L), and the 
function +(x, y(1) . . . . .  y(k-l)). It seems that ~k(L, +) are convenient for 
higher-order mechanics. 

In particular, if the Zermelo conditions (2.8) are satisfied, then the 
energies %~(L) . . . . .  %~(L) vanish and we have a shorter form of the 
Noether theorem: 
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Theorem 7.3. For any infinitesimal symmetry (7.1) of a differentiable 
Lagrangian L(x, y(1) . . . . .  y(k)) which satisfies the Zermelo conditions (2.8) 
and for any differentiable functions d0(x, y(~) . . . . .  y(k-~)) the function 

d~f 1 d 1 d k-I 
~k(L, ~) = I~,(L) - -~.-ftlkv-l(L) + "'" + (--1) k-1 k! dt k-I I~(L) - 

is conserved along the solution curves of the Euler-Lagrange equation 
0 
Ei(L) = O. 

In the case k = 1, the function ~ l(L, do) reduces to 

d e f O L (  OL ) o y "  oy" ~ ( L ,  *)  = V~-2--7 - "r Y ~ - 7  - L - *(x) 

and Theorem 7.2 is the classical Noether theorem (Souriau, 1970). 
If the order of k is 2, we have the function 

dT def 1 d l~v(L) _ , rg2(L ) + --~ g~c(L) - + @2(L' +)  = IZv(L) - ~. d t  

where 

[ I ( L  ) = Vi Ot  12 = Vi O.__L_L + dV i OL 
Oy (2)i' Oy (t)i dt Oy (2)i 

1 d l ' (L)  L, %~(L) = 1 
%2(L) = I2(L) 2 dt - ~  P(L)  

Good applications can be found for Lagrangians of the form (2.3) in 
the higher-order electrodynamics. 

The above theory can be extended to time-dependent higher-order 
Lagrangians. 

8. CONCLUSIONS 

In the present paper we have studied the extension to the k-velocity 
manifold of classical Lagrangian mechanics. 

Our investigation has focused on the variational problem for the integral 
of action I(c) of a higher-order Lagrangian L(x, y(1) . . . . .  y(k)). After finding 
the Zermelo conditions under which l(c) does not depend on the parametriza- 
tion of the curve c, applying classical methods from the variational calculus, 

0 
we deduce the Euler-Lagrange equation Ei(L ) = O. 
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Some important new operators dvMt,  1~, . . . .  I k and new higher-order 
energies %~(L) . . . . .  %k(L) have appeared. This happens since the known 
concept  o f  energy %(L) is not sufficient. Indeed, we showed that for k > 1 
there are some obstructions to the conservation o f  the energy %(L) along the 

0 
solution curves of  the equation El(L)  = 0. It is remarkable that the energy 
o f  order k, %~(L) satisfies the equation 

d ~ ( L )  o dx i 
-- Ei (L  ) - -  

dt  dt  

Consequently,  %~(L) has the above conservation property. 
The main part o f  this theory is subordinated to the aim of  providing a 

Noether  theorem. So we defined the notion o f  symmetry  in Section 7 and 
we proved the Noether  theorem, Theorem 7.2, and a shorter form of  it 
that holds when the Zermelo conditions are satisfied. The invariants o f  the 
infinitesimal symmetries are explicitly written. 

So, we have shown that the higher-order Lagrangian mechanics  in the 
k-velocity space is a natural extension of  classical Lagrangian mechanics.  
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